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Tetra-elastic is a new package for calculating the elastic constants of tetragonal structure. It is 

compatible with the highly accurate all electron full potential linearized augmented plane wave plus 

local orbital [FP-(L)APW+lo] method as implemented in WIEN2k code. The package is released 

recently; the package and the user guide are available on   

(http://www.wien2k.at/reg_user/unsupported/). In this paper we provide detail description of the 

formalism of calculating the elastic constants of tetragonal structure. To testify the accuracy of the 

Tetra-elastic package several tetragonal structure compounds were used. The results show that the 

calculated elastic constants using Tetra-elastic exhibit better agreement with the available 

experimental data than the previous theoretical results used different methods. In this package the 

second-order derivative  E   of polynomial fit  EE   of energy vs strains at zero strain  0  is 

used to calculate the tetragonal elastic constants. 

 

 

Keywords: Elastic constants; Tetra-elastic; tetragonal structure: FPLAPW; DFT 

 

 

 

1. INTRODUCTION 

The fast development in the computer’s technology and theoretical techniques within density 

functional theory (DFT) make it possible to compute large and complex structures. The theoretical 

techniques are completely independent to solve the quantum mechanical Kohn Sham DFT equations. 

http://www.electrochemsci.org/
mailto:maalidph@yahoo.co.uk
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One of the most accurate theoretical techniques is the ab initio DFT technique [1,2] which allows the 

structure to be efficiently optimized [3] and hence to obtained the elastic properties. It is well known 

that the elastic properties provide valuable information about the binding characteristic between 

adjacent atomic planes. Anisotropic characters of binding and structural stability are usually defined by 

the elastic constants Cij. These constants have been often related to the shear modulus and Young’s 

modulus, which are frequently measured for polycrystalline materials when investigating their 

hardness. The elastic moduli require knowledge of the derivative of the energy as a function of the 

lattice strain [4].  

Recent developments in the theoretical calculation of the elastic properties within one of the 

highly accurate all electron full potential linearized augmented plane wave plus local orbital package 

[5] is very attractive technique because many other mechanical properties such as bulk modulus, shear 

modulus, young’s modulus, etc, can be derived from elastic constants. We should emphasize that the 

elastic constants determine the response of the materials to the external forces, as typified by bulk 

modulus, Young’s modulus, shear modulus and Poission’s ratio which play crucial rule in determining 

the strength of the materials. The elastic properties define how a material that undergoes stress deforms 

and then recovers and returns to its original shape after stress ceases. The elastic constants of solids 

provide a link between the mechanical and dynamical behaviors of crystals and give important 

information concerning the nature of the forces operating in solids. These constants can be also 

predicting the structural stability of materials. 

Based on our experiences in writing packages for calculating the elastic constants for different 

structures, namely cubic, hexagonal and orthorhombic [6-8]. In this work we have addressed ourselves 

to write a new package for calculating the elastic properties of the tetragonal structures by using 

second-order derivative within WIEN2k code. In order to testify our new Tetra-elastic package, 

several tetragonal structure compounds whose elastic constants are known experimentally and 

theoretically were used. We found that the Tetra-elastic give very accurate results which is in good 

agreement with the experimental data than the previous calculations.  

 

 

 

2. THEORETICAL BACKGROUND   

Theoretically the elastic constants are defined by means of a Taylor expansion of the total 

energy  ,VE for the system, with respect to a small strain    of the lattice. If we consider the 

bravais lattice vectors of tetragonal crystal structure as a matrix form  R  the distortion of the lattice 

 R  is expressed by multiplying R   with a symmetric yxxy    distortion matrix i.e.  DRR  , 

which is written as,                                      
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And in Voiget notation (It is often convenient to change to the Voigt notation in order to reduce 

the number of indices. The Voigt notation replaces ,1xx ,2yy ,3zz zy (and yz ) ,4 xz (and 

zx ) ,5 xy (and yx ) 6  
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we express the energy of the strained system by means of a Taylor expansion in the distortion 

parameters,  
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The linear terms vanish if the strain causes no changes in the volume of the crystal. Otherwise, 

i  are related to the strain on the crystal and ijC  are elastic constants and 0V  is the volume of 

unstrained tetragonal system and we use it to evaluate the elastic constants. 

To obtain elastic constants of tetragonal structure we have used the method obtained in Ref [9]. 

In this method elastic constants were calculated by applying small strains to the unstrained lattice. 

There are six independent elastic constants for a tetragonal symmetry, called C11, C12, C13, C33, 

C44, and C66. Since we have six independent elastic constants, we need six different strains to 

determine these elastic constants. The six distortions used in the Tetra-elastic Package are described 

below. The first three distortions are written as 
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and 
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These three distortions change the lattice parameter in the a and c directions. The symmetry of 

the strained lattice is therefore still tetragonal, however the volume of the distortion lattice changes by 

using D1 and D3 and the energy for these distortions can be obtained as 
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The second three type of distortions are volume conserved orthorhombic (D4 and D6) and 

monoclinic (D5) distortions and written as 
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and the energy for these distortions can be obtained as 
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respectively. 

 

 

 

3. DETAILS OF CALCULATIONS AND STRUCTURAL ASPECTS  

As the WIEN2k code officially doesn’t including a package, which is completely compatible 

with it, to calculate the elastic properties of the tetragonal structure and since the elastic properties are 

very crucial because it is related to various fundamental properties. In order to fill this gap we have 

released a new package called Tetra-elastic for calculating the elastic properties of tetragonal structure 

compounds [10] within the framework of WIEN2k code. Based on the second-order derivative  E   

of polynomial fit  EE   of energy vs. strains at zero strain  0 , the Tetra-elastic package 
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calculates the tetragonal elastic constants. The Tetra-elastic package is compatible with the highly 

accurate all electron full-potential linearized augmented plane wave plus local orbital [FP-(L)APW+lo] 

method to solve the Kohn Sham DFT equations within the framework of the WIEN2K code [5]. The 

exchange and correlation potential was described by the generalized gradient approximation (GGA-

PBE) formulated by Perdew et al [11].  In the [FP-(L)APW+lo] method, the unit cell volume is 

partitioned into the non-overlapping atomic spheres around each atom and the remaining interstitial 

area and two different sets of basis functions are used in these regions.  

 

Table 1. The lattice constants obtained from different methods of calculations using different 

exchange correlation (XC) potentials in comparison with the available values. 

 
Compound Symmetry XC a (Å) c (Å) 

α-Pt2Si 
a
 
 

139 (I4/mmn) LDA 3.9196 5.9485 

Exp
 b
   3.9482 5.9628 

AgGaSe2
 c
 

AgGaSe2
 d

 

AgGaSe2 
e
 

Exp
 f
 

122 (I42d) 

 

LDA 

GGA91 

PBE 

 

6.0529 

5.8380 

6.0579 

5.9850 

11.2100 

11.0221 

11.2944 

10.9047 

 

MgF2 
g
 

MgF2 
g 

Exp 
h 
 

136 (P42/mnm) 

 

PBE 

PBE 

 

4.7086 

4.6954 

4.6150 

3.0994 

3.0983 

3.0428 

SnO2
 i
 

SnO2
 i 

 

SnO2
 j
 

Exp 
k
 

Exp 
l
 

 

136 (P42/mnm) 

Rutile 

LDA 

GGA 

PBE 

 

 

4.7178 

4.8179 

4.8270 

4.7370 

4.7380 

3.1798 

3.3383 

3.2486 

3.1880 

3.1887 

TiO2 
m
 

TiO2
 m

 

Exp 
m

 
 

136 (P42/mnm) 

Rutile 

LDA 

GGA 

4.5669 

4.6545 

4.5936 

2.93012
 

2.97608
 

2.95874
 

PtS
 n
  

PtS 
n
 

Exp 
o,p

 
 

131 (P42/mmc) LDA 

GGA91 

3.4400 

3.5400 

3.4700 

6.0900 

6.1700 

6.1100 

Ti2B
q 

Exp
 r
  

 

140 (I4/mcm) PBE 

 

5.6470 

6.1000 

4.7410 

4.5300 

TiAl 
s
 

Exp 
s
 

 

123(P4/mmm) GGA 3.9890 

3.9900 

4.0340 

4.0700 

TiO2 
t
 

TiO2
 t
 

Exp 
t
 

 

141 

(I41/amd) 

Anatase 

LDA 

GGA 

 

 

3.7604 

3.8211 

3.7845 

9.7474 

9.6712 

9.5142 

     
a
 Ref. [18], 

b
 Ref. [22], 

c
 Ref. [23], 

d
 Ref. [24], 

e
 Ref. [9], 

f
 Ref. [25], 

g
 Ref. [13], 

h
 Ref. [26], 

i
 Ref. [12], 

j
 Ref. [27], 

k
 Ref. [28], 

l
 Ref. [29], 

m
 Ref. [12], 

n
 Ref. [19], 

o
 Ref. [30], 

p
 Ref. [31], 

q
 Ref. [20], 

r
 Ref. [32], 

s
 Ref. [21], 

t
 Ref. [12] 
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In the atomic spheres, wave functions are expanded into atomic orbitals while in the interstitial 

region a plane-wave basis set is used. Charge density and potential are expanded into lattice harmonics 

and Fourier series in the atomic spheres and interstitial regions, respectively. In order to get the total 

energy convergence the plane-wave expansion cutoff was Kmax=7/Rmt ( Kmax=8/Rmt ) where Rmt is the 

smallest atomic muffin-tin sphere in the unit-cell and the maximum angular momentum of the atomic 

orbital basis functions was set to lmax=8 ( 9 ), respectively. Since tetragonal compounds have internal 

coordinates, our calculations were optimized by minimization of the forces (1 mRy/au) acting on the 

atoms. To testify the accuracy of the newly released Tetra-elastic package several tetragonal structure 

compounds having different space group were used.  

In Table 1, we have listed the cell parameters and the space groups of nine tetragonal structure 

compounds which were used in this work.  

 

 

 

4. RESULTS AND DISCUSSION 

Table 2. The calculated elastic constants in unit of (GPa) for AgGaSe2 in comparison with 

experimental data and the previous theoretical results using different methods, lattice constants 

and exchange correlation (xc) potentials. 

 

 AgGaSe2 
a
 AgGaSe2 

b
 AgGaSe2 

c
 AgGaSe2 AgGaSe2 

d
 AgGaSe2 

e
 

Method NPP UPP FPLAPW FPLAPW Exp Exp 

XC LDA GGA PBE PBE   

a (Å) 5.9340  6.0579 

 

6.0579 

 

  

c (Å) 10.6693  11.2944 

 

11.2944 

 

  

C11 92 86.4 74.95 70.95 89.8 80.1 

C12 60 55.2 41.03 42.3 65.7 51.6 

C13 56 52.9 43.03 41.2 45.1 52.6 

C33 70 72.4 59.57 58.46 58.0 70.7 

C44 26 20.3 30.10 23.66 21.7 21.2 

C66 17 25.3 21.62 24.39 13.3 24.7 

UPP : Ultrasoft pseudopotentials 

NPP : Norm-conserving pseudopotentials 
a
 Ref. [16],  

b
 Ref. [17], 

c
 Ref. [9] , 

d
 Ref. [14] , 

e
 Ref. [15], This work (Bold) 

 

The tetragonal symmetry possesses six independent elastic constants, namely; 11C , 12C , 13C  , 

33C , 44C , and 66C . In the Tables 2-9, we have listed the calculated elastic constants of nine tetragonal 

structure compounds using the newly released Tetra-elastic package. 

Before attempting elastic constants calculations for tetragonal structure compounds whose 

elastic constants are unknown experimentally and theoretically. First we have calculated the elastic 

constants for several tetragonal structure compounds whose elastic constants are unknown 
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experimentally and theoretically to testified the accuracy of the Tetra-elastic package in comparison 

with the previously reported theoretical and experimental data. The calculated elastic constants of 

TiO2(Rutile) [12], MgF2 [13], and SnO2(Rutile) [12] presented in Table 3, 4 , and 5 show that our 

calculated elastic constants show better agreement with the experimental data then the previous 

theoretical calculations.  

 

Table 3. The calculated elastic constants in unit of (GPa) for α-Pt2Si and TiO2 (Rutile) in comparison 

with experimental data and the previous theoretical results using different methods, lattice 

constants and different exchange correlation (xc) potentials. 

 

 α-Pt2Si 
f
 α-Pt2Si TiO2

 g
 TiO2 

g
 TiO2 TiO2

 g
 

Method FPLMTO FPLAPW UPP UPP FPLAPW Exp 

XC LDA PBE LDA GGA PBE  

a (Å) 3.9196 3.9482 4.5669 4.6545 4.5937 4.5936 

c (Å) 5.9485 5.9628 2.9301 2.9761 2.9581 2.9587 

C11 332.4 324.8 293.8 270.1 268.3 269.0 

C12 239.6 215.3 225.5 172.0 180.2 177.0 

C13 169.4 182.5 171.0 147.0 146.4 146.0 

C33 298.0 281.2 516.7 467.6 477.9 480.0 

C44 62.7 71.0 122.7 115.9 122.3 124.0 

C66 169.3 172.2 246.2 216.3 223.6 192.0 
f
 Ref. [18], 

g
 Ref. [12], This work (Bold) 

 

Table 4. The calculated elastic constants in unit of (GPa) for MgF2 in comparison with the previous 

theoretical results using different methods, lattice constants and same exchange correlation (xc) 

potentials. 

 

 MgF2  
h
 MgF2 

h 
MgF2   MgF2 

i
 

Method FPLAPW PAW FPLAPW Exp 

XC PBE PBE PBE  

a (Å) 4.7086 

 

4.6954 

 

4.7086 

 

 

c (Å) 3.0994 

 

3.0983 

 

3.0994 

 

 

C11 130.0 127 128.3 123.7 

C12 78.2 80.1 79.2 73.2 

C13 54.7 57.3 61.9 53.6 

C33 185.0 187.7 196.3 177.0 

C44 50.5 50.8 51.2 55.2 

C66 83.0 87.2 87.7 97.8 

PAW : Projector augmented wave 
h
 Ref. [13],

  i
 Ref. [33], This work (Bold) 

 

Table 2 presents the current results of the elastic constants of AgGaSe2 compound in 

comparison with the experimental data [14,15] and the previous theoretical calculation using different 
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methods and different exchange correlation potentials [9,16,17]. Our calculated C12 and C66 are agreed 

with neutron measurements while C13 and C33 agree with ultrasonic measurements. Meanwhile one can 

see that our calculated C12, C66, C13 and C33 are in good agreement with previously reported FPLAPW 

results [9]. 

Table 3 presents the current results of the elastic constants of α-Pt2Si [18] and TiO2 (Rutile) 

[12] in comparison with experimental data and the previous theoretical results using different methods, 

different lattice constants and different exchange correlation potentials. One can see that our results for 

TiO2 exhibit better agreements with the experimental data [12] than the previous calculations [12]. 

Meanwhile, Table 3 shows there is reasonable agreement between our calculated elastic constants of α-

Pt2Si-FPLAPW-PBE and the previously calculated elastic constants for α-Pt2Si-FPLMTO-LDA. 

Our calculated elastic constants of MgF2 (FPLAPW-PBE) in comparison with the previous 

calculations using FPLAPW-PBE/PAW-PBE [13] are listed in Table 4. We noticed that there is fairly 

good agreement between our results and FPLAPW-PBE/PAW-PBE results. We should emphasize that 

our MgF2-FPLAPW-PBE results agree with MgF2-FPLAPW-PBE/PAW-PBE results in the matter of 

ordering the elastic constants, and the superposition of elastic constants obtained from our results agree 

well with FPLAPW-PBE/PAW-PBE results. 

 

Table 5. The calculated elastic constants in unit of (GPa) for SnO2 in comparison with the previous 

theoretical results using different method, lattice constants and different exchange correlation 

(xc) potentials. 

 

 SnO2 
f
 SnO2

f 
SnO2  SnO2

f 

Method UPP UPP FPLAPW EXP 

XC LDA GGA PBE  

a (Å) 4.7178 

 

4.8179 

 

4.7370 

 

 

c (Å) 3.1798 

 

3.3383 

 

3.1880 

 

 

C11 246.2 218.2 228.2 261.7 

C12 178.8 140.1 174.0 177.2 

C13 149.3 126.9 148.0 155.5 

C33 424.6 377.7 454.1 449.6 

C44 97.5 87.2 89.7 103.1 

C66 204.6 181.9 252.1 207.4 
f
 Ref. [12], This work (Bold) 

 

Table 5 presents our calculated elastic constants of SnO2 (SnO2-FPLAPW-PBE) in comparison 

with the previous theoretical results using different method, different lattice constants and different 

exchange correlation potentials. One can see our results show better agreement with experimental 

values [12] and previous SnO2-UPP-LDA calculations [12] than the previous SnO2-UPP-GGA 

calculations [12].  
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In Table 6, the results of PtS [19] using UPP-GGA and UPP-LDA are compared with our 

FPLAPW-PBE. We should emphasize that our results show better agreement with the UPP-LDA data 

than the UPP-GGA calculations. 

 

Table 6. The calculated elastic constants in unit of (GPa) for PtS in comparison with the previous 

theoretical results using different methods, lattice constants and exchange correlation (xc) 

potentials. 

 

 PtS 
j
 PtS 

j 
PtS 

Method UPP UPP FPLAPW 

XC LDA GGA91 PBE 

a (Å) 3.4400 3.5400 3.4701 

c (Å) 6.0900 6.1700 6.1092 

C11 217.0 186.0 205.2 

C12 73.0 53.0 63.1 

C13 149.0 113.0 146.2 

C33 343.0 283.0 328.2 

C44 30.0 28.0 26.4 

C66 12.0 13.0 16.4 
j
 Ref. [19], This work (Bold) 

 

Table 7. The calculated elastic constants in unit of (GPa) for Ti2B and TiAl in comparison with the 

previous theoretical results using different methods, and same lattice constants, and exchange 

correlation (xc) potentials 

 

 Ti2B 
k
 Ti2B  TiAl 

l 
TiAl TiAl 

l 

Method PAW FPLAPW UPP FPLAPW EXP 

XC PBE PBE GGA PBE  

a (Å) 5.6470 5.6470 3.9890 3.9900 3.9900 

c (Å) 4.7410 4.7410 4.0340 4.0700 4.0700 

C11 321.0 291.1 170.0 177.7 183.0 

C12 100.0 93.2 79.0 62.8 74.0 

C13 94.0 126.5 78.0 65.1 74.0 

C33 299.0 271.3 177.0 179.3 178.0 

C44 105.0 114.0 113.0 79.81 105.0 

C66 100.0 71.6 73.0 79.0 78.0 
k
 Ref. [20], 

l
 Ref. [21], This work (Bold) 

 

Table 7 presents the current calculated elastic constants for Ti2B [20] in comparison with the 

previous theoretical results using different methods, same lattice constants and same exchange 

correlation potentials. It is clear that there is a significant difference between the two methods. Since 

there are no experimental data are available hence, we consider the present results as a prediction 

study. In addition the current calculated elastic constants for TiAl [21] along with the experimental 

data and pervious theoretical results using different methods, different lattice constants and different 
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exchange correlation potentials are presented in Table 7. It is clear that our FPLAPW-PBE calculation 

using the experimental lattice constants show better agreement with the experimental data than that the 

UPP-GGA results.  

In Table 8  the calculated elastic constants for TiO2 (Anatase) [12] are presented in comparison 

with the previous theoretical results using different method, different lattice constants and different 

exchange correlation potentials. It is clear that the three different methods predict different values and 

since there are no experimental data are available to be compared with our and previous theoretical 

results, so based on our results which show good agreement with the experimental data (see Tables 3-

5) hence, we consider the present results are more accurate, hoping that our present work will stimulate 

some more works on this material. Future experimental works will testify our calculated results. 

 

Table 8. The calculated elastic constants in unit of (GPa) for TiO2 (Anatase) in comparison with the 

previous theoretical results using different method, lattice constants and different exchange 

correlation (xc) potentials. 

 

 TiO2
 m

 TiO2 
m

 TiO2 

Method UPP UPP FPLAPW 

XC LDA GGA PBE 

a (Å) 3.7604 3.8211 3.7867 

c (Å) 9.7474 9.6712 9.5149 

C11 395.2 336.5 377.2 

C12 153.9 138.6 111.7 

C13 156.0 136.0 136.4 

C33 195.9 192.1 192.4 

C44 47.3 49.4 58.9 

C66 59.5 58.3 82.9 
m

 Ref. [12], This work (Bold) 

 

 

 

5. CONCLUSION  

A new package called Tetra-elastic is released. This package is to calculate the elastic 

constants for tetragonal structure. The package is compatible with WIEN2k code. Several tetragonal 

structure compounds whose elastic constants are known experimentally and theoretically were used to 

testify the newly released Tetra-elastic package. We should emphasize that the calculated elastic 

constants using Tetra-elastic package exhibit better agreement with the available experimental data 

than the previous theoretical results obtained from different theoretical methods. The calculated elastic 

constants for several tetragonal structure compounds using the Tetra-elastic package are presented in 

comparison with the previous theoretical results using different method, different lattice constants and 

different exchange correlation potentials. It is clear that the different methods predict different values 

and since there are no experimental data are available for all compounds to be compared with our and 

previous theoretical results, so based on our results which show good agreement with the experimental 
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data (see Tables 3-5) hence, we consider the present results are more accurate, hoping that our present 

work will stimulate some more works on this material. Future experimental works will testify our 

calculated results. 

 

 

ACKNOWLEDGEMENTS 

This work was supported from the institutional research concept of the project CENAKVA (No. 

CZ.1.05/2.1.00/01.0024). The School of Materials Engineering, University Malaysia Perlis (UniMAP), 

Perlis, Malaysia. 

 

 

References 

 

1. S. Gao, Computer Physics Communications, 153 (2003) 190. 

2. K. Schwarz, Journal of Solid State Chemistry, 176 (2003) 319. 

3. B. B. Karki, L. Stixrude, S. J. Clark, M. C. Warren, G. J. Ackland, J. Crain, American 

Mineralogist,  82 (1997) 635. 

4. Y. Benmimoun, A. Bouhemadou, R. Khenata, A.H. Reshak, B. Amrani, M. Ameri, and H. 

Baltache, Eur. Phys. J. B 61 (2008) 165.  

5. P. Blaha , K. Schwarz, G. K. H. Madsen, D. Kvasnicka  and J. Luitz, WIEN2K, “an Augmented 

Plane Wave + Local orbitals program for calculating crystal properties”, Karlheinz Schwarz, 

Techn. Universitat, Wien, Austria, (2001), ISBN 3-9501031-1-2. 

6.  Cubic-elastic http://www.wien2k.at/reg_user/unsupported/ 

7. Hex-elastic http://www.wien2k.at/reg_user/unsupported/ 

8. Ortho-elastic http://www.wien2k.at/reg_user/unsupported/ 

9. T. Ouahrani, A. Otero-de-la-Roza, A. H. Reshak, R. Khenata, H. I. Faraoun, B. Amrani, M. 

Mebrouki, V. Luana, Physica B, 405 (2010) 3658. 

10. Tetra-elastic http://www.wien2k.at/reg_user/unsupported/ 

11. J. P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett., 77 (1996) 3865. 

12. H. Yao, L. Ouyang, and W. Ching, J. Am. Ceram. Soc., 90 [10] (2007) 3194. 

13. R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, C. Draxl , Computer Physics 

Communications, 184 (2013) 1861. 

14. D. Eimerl, J. Marion, E. K. Graham, H. A. McKinstry, S. Haussuhl, IEEE J.Quantum Electron.QE-

27 (1991) 142.  

15. R. Fouret, P. Derollez, A. Laamyem, B. Hennion, J.Gonale, J. Phys.: Condens. Matter, 9 (1997) 

6579.  

16. B. B. Karki, S. J. Clark, M. C. Warren, H. C. Husueh, G. J. Ackland, J. Crain, J. Phys.: Condens. 

Matter, 9 (1997) 375.  

17. J. Łazewski, H. Neumann, K. Parlinski, J. Appl. Phys., 93 (2003) 3789. 

18. O. Beckstein, J. E. Klepeis, G. L. W. Hart, and O. Pankratov , Phys. Rev. B,  64 (2001) 155110 . 

19. A. Marmier, P. S. Ntoahae,  P. E. Ngoepe, D. G. Pettifor,  and S. C. Parker, Phys. Rev. B, 81 (2010) 

172102 . 

20. Y. Hai-Yan, W. Qun, C. Shao-Mei, G. Ping, Trans. Nonferrous Met. Soc. China, 21 (2011) 1627. 

21. R. Sot, K. J. Kurzydłowski, Materials Science-Poland, 23 (2005) No. 3.  

22. R. P. Ram and S. Bhan, Z. Metallkde., 69 (1978) 524. 

23. S. Chen, X.G. Gong, S.-H.Wei, Phys. Rev. B, 75 (2007) 205209.  

24. A. Chahed, O. Benhelal, S. Laksari, B. Abbar, B. Bouhafs, N. Amrane, Physica B, 367 (2005) 142.  

25. J. L. Shay, J. H. Wernik, Ternery Chalcopyrite Semiconductors: Growth, Electronic Properties 

and Applications, Pergamon Press, Oxford, 1974.  

http://link.aps.org/abstract/PRB/v64/e155110


Int. J. Electrochem. Sci., Vol. 8, 2013 

  

12263 

26. G. Vidal-Valat, J. P. Vidal, C. M. E. Zeyen, K. KurkiSuonio, Acta Crystallogr. Sect. B, 35 (1979) 

1584. 

27. İ. Erdem, H. Hüseyin Kart, T. Cagin, Archives of Materials Science and Engineering, 45/2 (2010) 

108.  

28. N. M. A. Hadia, S. V. Ryabtsev, E. P. Domashevskaya, P.V. Seredin, The European Physical 

Journal Applied Physics, 48/1 (2009) 10603.  

29. A.A. Bolzan, C. Fong, B.J. Kennedy, C.J. Howard, Acta Crystallographica B, 53 (1997) 373.  

30. F. Grønvold, H. Haraldsen, and A. Kjekshus, Acta Chem. Scand., 14 (1960) 1879. 

31. R. Collins et al., Inorg. Chem., 18 (1979) 727. 

32. P. MOHN, J Phys C: Solid State Phys, 21 (1988) 2841. 

33. H. R. Cutler, J. J. Gibson, K. A. McCarthy, Sol. State Comm., 6 (1968) 431. 

 

 

© 2013 by ESG (www.electrochemsci.org) 

http://www.electrochemsci.org/

