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In this paper the response of an amperometric biosensor at mixed enzyme kinetics and diffusion 

limitation in the cases of both enzyme entrapped within the conducting polymer film and in bulk 

solution is discussed. The model is based on diffusion equations containing a non-linear term related to 

Michaelis–Menten kinetics of the enzymatic reaction processes. New Homotopy perturbation method 

is employed to solve the system of coupled non-linear diffusion equations for the non-steady-state 

condition. Simple and accurate general analytical expressions of concentration of substrate, hydrogen 

peroxide and flux are derived for all possible values of parameters. A numerical simulation was carried 

out using Matlab/Scilab program. The analytical results are compared with the numerical results and 

found to be in good agreement. The results obtained in this work are valid for the entire solution 

domain 
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1. INTRODUCTION 

The development of amperometric biosensor is one of the major areas of interest concerning 

research in the detection of substances. Amperometric biosensors, commonly also referred to as 

enzyme electrodes, constitute a rapidly growing area of interest to biotechnologists. These devices 

combine the analytical power of electrochemistry with the specificity of biological catalysts for 

particular substrates. Amperometric biosensor is a type of biosensor which measures the change in the 

current of a working indicator electrode by direct electrochemical oxidation or reduction of the 

products of a biochemical reaction. In these types of biosensors, the potential at the electrode is made 

constant during the measurement of current. These are known to be reliable, cheap and highly sensitive 

for environment, clinical and industrial purposes.  
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Amperometric biosensors based on oxidase enzymes that generate H2O2 are the most widely 

used biosensors, the transduction path being the electrochemical oxidation of the peroxide formed in 

an enzyme reaction. In this case, the electrode response is dependent on oxygen concentration in the 

reaction medium [1-4]. Oxidase enzymes are commonly used in amperometric biosensors. This is due 

to wide commercial availability and because the oxidase reaction involves electroactive species. Wang 

et al. [5-7] have shown that cathodic detection can be made possible, by using a noble metal catalyst of 

microscopic dimensions. Somasundrum et al. [8,9] have shown that conducting polymer films can also 

be used for this purpose, following the electrodeposition of Rh microparticles.   

Mathematical model relating the various experimental parameters (enzyme loading, film 

thickness, etc.) to the electrode response is useful for further understanding of the microparticle 

catalytic properties [10]. Currently, no such mathematical model exists. However related models have 

been reported both for an enzyme within a microparticle-free conducting polymer film [11], and for an 

enzyme-free microheterogenous coating [12]. Wang et al. [13,14] presented a concise discussion about 

carbon paste containing dispersed microparticles of metals such as rhodium or platinum  can reduce 

H2O2 without significantly reducing O2 . This observation is shown that the microparticles play a vital 

role in selective reduction of  H2O2.   

Romero et al. [15] presented a comprehensive numerical treatment of the diffusion and reaction 

within sandwich-type amperometric biosensor. Transient response of electrochemical biosensors with 

asymmetrical sandwich membranes [16] and enzyme electrode [17] are discussed. Baronas et al. [18] 

developed the mathematical model of amperometric biosensor. Pierre Gros and Alain Bergel [19] 

showed the experimental study of electrodes modified by entrapment of glucose oxidase in an 

insulating polypyrrole film. 

Earlier, mathematical expressions pertaining to analytical concentration and current for limiting 

cases in a conducting polymer film were calculated by Bartlett and Whitaker [11]. Somasundrum et al. 

[20] suggested a mathematical model of the steady state current and the function and optimization of 

metal particles deposited in a conducting polymer for the limiting cases only (high and low substrate 

concentration). However, to the best of our knowledge, till date no simple analytical results for the 

concentrations of substrate and hydrogen peroxide for all values of the parameters have been reported. 

The purpose of this communication is to derive analytical expressions for concentrations of substrate 

and hydrogen peroxide in a conducting film containing metal microparticles using new Homotopy 

perturbation method. This method is very easy compared to all other asymptotic methods. This simple 

analytical expression of concentrations of substrate, hydrogen peroxide and flux is very much useful to 

the electrochemical scientists for the analysis of experimental data. The analytical results have been 

extended numerically and are to be in good agreement with each other. 

 

2. MATHEMATICAL FORMULATION OF PROBLEMS AND ANALYSIS 

2.1. Mathematical formulation  

The governing parameters for the Michaelis-Menten kinetics of enzymatic reactions are the 

enzyme kinetic rate and the diffusion rate across the enzymatic layer. In Michaelis-Menten reaction 
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scheme, the enzyme E1 converts the oxidation of substrate (S) into the product (P) through a two-step 

process. First E1 combines with S to form a complex E1S which then breaks down into the product P 

releasing E2 in the process. The reaction scheme is represented schematically by 

2

k

1

k

k
1 EPS][E E S

cat1

1-

                                                                                  (1) 

Eq. (1) gives the reduction of the enzyme from E1 to E2. In this reaction scheme, the re-

oxidation of the enzyme reacts with oxygen (A) producing hydrogen peroxide (B), and then B which 

reacts at a microparticle with a pseudo first-order rate constant (k) producing water (C).  

 

 
 

Figure 1. Schematic diagram of possible mechanisms occurring at an enzyme electrode. 

 

A general scheme (Fig. 1) that represents the reaction occurring at a microparticle is shown 

below: 
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At steady-state mass balances within the film for the above enzymatic reaction, leads to the 

following system of non-linear differential equations [20]: 
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with boundary conditions [11] 
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At 0, 0, 0
ds

x b
dx

                                                                                     (6) 

At , , 0sx L s k s b  
                                                                               

(7) 

Where x stands for space, s(x) and b(x) denote the concentration functions of the substrate and, 

hydrogen peroxide respectively. e  is the total enzyme concentration in the film  21 eee  , SD  is 

the diffusion coefficient of substrate into polymer film, BD  is the diffusion coefficient of hydrogen 

peroxide into polymer film, MK  is the Michaelis-Menten constant, catk  is the catalytic reaction rate 

constant, ks is the partition coefficient of substrate in the film,L is film thickness, k is the change 

transfer rate constant for oxidation of hydrogen peroxide and s  denotes concentration of substrate in 

the bulk solution. The flux of hydrogen peroxide reacting at the electrode surface is  

0
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x
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j D
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2.2. Normalized form 

         The governing differential equations are non-dimensionalized using the following appropriate 

normalizing parameters. 
1 12 2

1; ; ; ; ; ; ;S M sB
s b

s s cat s b M

D K k sDs b x L L
u v X

k s k s L k e k K

    
 



 

   
          

  
(9 

Using the above normalizing parameters, the equations (4) and (5) can be written as follows: 
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(11) 

Where s  is the kinetic length of the substrate and b  is the kinetic length of the hydrogen 

peroxide and u and v represent the normalised concentrations of substrate and hydrogen peroxide. The 

boundary conditions in non-dimensional form for the studied cases are:  

when 0, 0, 0
du

X v
dX

  
                                                                               

(12) 

when 1, 1, 0X u v                                                                                      (13) 

The normalised flux is expressed as, 

0

b

XB s

j L dv

D k s dX




 
   

                                                                                      

(14)  

 

 

3. ANALYTICAL EXPRESSION OF THE CONCENTRATION AND FLUX USING NEW  

HOMOTOPY APPROACH 

Recently, Rajendran and Anitha [21] have applied the new Homotopy approach to non linear 

problems and demonstrated the efficiency of the new Homotopy approach for non-mathematicians. By 

using this method (Appendix – A), the concentrations of substrate and hydrogen peroxide can be 

obtained as follows: 
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Using Eq. (14), we can obtain the normalised flux as follows:  
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(17) 

Eq. (15) and Eq. (16) represent the new simple analytical expression of the concentrations of 

the substrate and hydrogen peroxide for all values of parameters 
1, and   . Eq. (17) is the simple 

analytical expression of normalised flux for all values of parameters 
1, and   .  

 

4. NUMERICAL SIMULATION  

 

 

Figure 2. Normalized concentration profiles of substrate calculated from Eq. (15), for different values 

of 1; ;    when (a) 0.1  , (b) 1   and (c) 1  . Solid lines represent the analytical 

solution obtained in this work; dotted lines represent the numerical solution. 
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Figure 3. Normalized concentration profiles of hydrogen peroxide calculated from Eq. (16) when (a) 
1 0.1; 0.1   , (b) 0.1; 0.1    and (c) 10.1; 0.1   . Solid lines represent the 

analytical solution obtained in this work; dotted lines represent the numerical solution. 

 

The function pdex4 in Matlab/Scilab software which is a function of solving the initial 

boundary value problems for parabolic-elliptic partial differential equations is used to solve the 

equation (10) and (11).  

Figures 2-4 illustrate the comparison of analytical result obtained in this work with the 

numerical result. Upon comparison, it is evident that both the results give satisfactory agreement. The 

Matlab/Scilab program is also given in Appendix -B. 

 

 

5. DISCUSSION 

Figs. 2-4 show the normalized concentration profiles of substrate and hydrogen peroxide in the 

film which are calculated from Eqs. (15) and (16) respectively. The distributions of substrate and 

hydrogen peroxide are shown to be dependent on the value of kinetic length 
1/ and /s bL L     . 
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Figure 4. Plot of the normalized concentration profiles for hydrogen peroxide for various values of (a) 

normalised film thickness, sL / , (b) the normalised film thickness, bL / , and  (c) the 

normalised  parameter  . The curves are calculated from Eq. (16). 

 

Concentration profiles in the film may be helpful to understand the present model in detail. 

Figs. 2(a)-(c) represent the concentration profiles of the substrate for various values of the parameters 

and  . From figures 2(a)-(b), it is inferred that the value of the concentration u increases when 

/ sL   decreases.  Concentration of the substrate is uniform when / 0.5sL   or width of the 

film is small. For small value of / sL  , substrate diffuses into the electrode surface.  

Figs. 3-4 show the concentration profiles of hydrogen peroxide for several values of the 

parameters 
1, and   . From figs. 3(a) and 4(a), it is evident that initially the value of the 

concentration of hydrogen peroxide increases and attains the maximum value and then decreases 

gradually for all values of  . The value of hydrogen peroxide reaches the maximum value at  X=0.5 

for all values of 
1 and   in figs. 3(b)-(c) and  4(b)-(c). 
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Figure 5. Plot of the normalised flux,  , against (a) the normalised parameter   and  (b) the 

normalised  parameter  
1  and  (c) the normalised parameter  . The curves are calculated 

from Eq. (17). 

 

The normalized flux   is plotted in Figs. 5(a)-(c). It illustrates that the flux for all values of 
1/ and /s bL L     . In fig. 5(a), the flux increases when the parameter 1  decreases. The flux 

reaches the steady state value when / 20sL   , for all values of 1 / bL  .  From fig. 5(b), it is 

observed that the flux increases as   increases and when 
1 20  , all the curves reach the steady state 

value. From fig. 5(c), it is known that the flux increases when   increases. 

Recently Anitha et.al [22] studied a theoretical model for an amperometric enzyme electrodes 

based on an immobilized flavoprotein. When ,S BD D and 01   b , Anitha et.al [22] 

obtained the analytical expression for the concentration of substrate and hydrogen peroxide as follows: 
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The expression of the normalized current  becomes 
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(20) 

The  normalized current    in previous work (Eqn.(20)) is compared with our present work 

(Eq. (17))  in Figure-6  for 1  and 01.01  .  From this figure, we conclude that the numerical  

value of current reported in previous work [22] ( Eq. (20)) and our work Eq. (17)  are same. From this 

figure, it is obvious that the values of the current reach the maximum value 1. 

 

 

Figure 6. Plot of normalized current   versus  at mixed oxidase enzyme for 1  when 01.01  . 

Symbols: (—)Eq. (20); ( )Eq. (17). Solid lines are compared with points. 

 

6. CONCLUSION 

The mathematical model of an amperometric biosensor can be successfully used to investigate 

the response of biosensors when enzyme reacts with its substrate to produce hydrogen peroxide. The 

system of non-linear reaction diffusion equation in amperometric biosensor is solved analytically using 

new Homotopy perturbation method. This model can be used to investigate the regularities and 
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kinetics of the amperometric biosensor. This theoretical results will be used to investigate the 

biosensor response and current by altering this model parameters which influencing the enzyme 

kinetics as well as the mass transport by diffusion. Our study helps future researchers in better 

understanding of the application of an amperometric biosensor in suitable phase with the help of 

mathematical analysis. 
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Appendix A: 

Approximate analytical solution of the concentrations of the substrate and hydrogen peroxide 

using new Homotopy perturbation method.In this appendix, solution of non-linear system of equations 

(Eq. (10) and Eq. (11)) is derived using new Homotopy perturbation method.  
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Supposing the approximate solutions of Eq. (A.1) and Eq. (A.2) have the form 











............

............

2

2

10

2

2

10

vppvvv

uppuuu

                                                                                (A.3) 

Substituting Eq. (A.3) into Eq. (A.1) and Eq. (A.2) (respectively), and equate the terms with the 

identical powers of p, we obtain      
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The initial conditions are as follows: 

0)0(0  dXXdu ;     1)1(0 Xu
                                                           

    (A.8) 

0( 0) 0v X   ;     0( 1) 0v X                                                                            (A.9) 

and 

0)0(  dXXdui ;  0)1( Xui for all i=1,2,3,…                                      (A.10)      
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( 0) 0iv X   ;  0)1( Xvi for all i=1,2,3,…                                                 (A.11) 

Solving the Eq. (A.4) and Eq. (A.6) and using the boundary conditions Eq. (A.8) and Eq. (A.9), 

we get 
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Substituting the value of  Xu0  in the Eq. (A.5) and solving the equations, using the boundary 

condition Eq. (A.10), we can obtain the value of  1u X . Similarly we can get the value of  Xv1  by 

solving the Eq. (A.7). When p=1, the approximate solution Eq. (A.3) becomes 

0 1 0( )u X u u u                                                                                                  (A.14) 

0 1 0( )v X v v v  
                                                                                                 

(A.15) 

Using the above equations, we get equations. (15) and . (16) in the next. 

 

Appendix B: 

Matlab/Scilab program to find the numerical solution of equations (10)–(11) 

function 

m = 0; 

x = linspace(0,1); 

t = linspace(0,100); 

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 

u1 = sol(:,:,1); 

u2 = sol(:,:,2);  

figure 

plot(x,u1(end,:)) 

title('Solution at t = 2') 

xlabel('Distance x') 

ylabel('u1(x,2)') 

figure 

plot(x,u2(end,:)) 

title('Solution at t = 2') 

xlabel('Distance x') 

ylabel('u2(x,2)') 

% -------------------------------------------------------------- 

function [c,f,s] = pdex4pde(x,t,u,DuDx); 

h=0.1; 

h1=0.1; 
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alpha=1; 

beta=1; 

c = [1;1];                                   

f = [1; 1] .* DuDx;   

F1 =-u(1)/(h^2*(1+alpha*u(1))); 

F2 =-u(2)/(h1^2)+beta*u(1)/(h^2*(1+alpha*u(1))); 

s =[F1; F2];                                                      

% -------------------------------------------------------------- 

function u0 = pdex4ic(x); 

u0 = [1; 0];                                  

% -------------------------------------------------------------- 

function [pl,ql;pr;qr] = pdex4bc(xl,ul,xr,ur,t); 

pl = [0; 0];                                

ql = [1; 1];          

pr = [ur(1)-1; ur(2)-1];                             

qr = [0; 0];  
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