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In alkaline media, the mechanism of the oxidation of ethanol on gold single crystal electrodes was 

investigated over a range of OH
- 
and ethanol concentrations using cyclic voltammetry. The influence 

of crystallographic orientation and the role of OH
-
 on the oxidation of ethanol were suggested. The 

electrocatalytic activity for ethanol oxidation was increased with increasing OH
-
 concentration in the 

solution and/or higher OH
- 

coverage on the electrode surface. The kinetic parameters such as Tafel 

slope and reaction orders in respect to OH
-
 and ethanol were determined. Two Tafel slopes were 

observed during ethanol oxidation on gold in alkaline media. At low potentials, the Tafel slope was 

found to be close to 120 mV dec
-1

, whereas the high Tafel slope over 300 mV dec
-1

 at high potentials, 

indicating the increasing the surface oxide coverage on the gold electrodes. The reaction orders with 

respect to OH
-
 was found to be potential-dependent and involved in the rate determining step.  
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1. INTRODUCTION 

The electrocatalytic activity of gold towards oxidation of several organic compounds such as 

monohydric alcohols [1-7], polyhydric alcohols [8-10], unsaturated aliphatic alcohol [11] and 

mesoxoalate [12] has been studied in alkaline media. In previous studies from Beltowska-Brzezinska 

et al. [13-16] it has been shown, first, that the cleavage of the α-C-H bond in the monohydric alcohols, 

which is facilitated by the adsorbed OH
-
 ions on the gold surface in alkaline media, is the rate 

determining step in the oxidation process. Therefore, the OH
-
 anion adsorption on the gold in alkaline 
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media plays a governing role in the reaction mechanism. Based upon adsorption data for OH
-
 [5], 

Ocon et al. suggested the oxidation of n-propanol on gold in alkaline media starts at the potentials 

where sufficient OH coverage present on the surface. Moreover, they supposed the reaction takes place 

on the Au-OH coverage via hydrogen bond between O-H group of the alcohol and Au-OH.  

Especially in alkaline media, gold is very favourable without being poisoned by the strong 

adsorbed intermediate species on its surface. Therefore, the effect of the crystallographic orientation of 

gold is also of particular interest for the adsorption and oxidation of organic molecules. However, only 

a few studies of the oxidation of ethanol on gold electrodes in alkaline media have been reported [17-

21]. Lai et al. [19] suggested that the activity of polycrystalline gold electrode for ethanol oxidation 

depends strongly on the pH of the electrolyte, showing an increase with pH higher than 10. Recently, 

Kwon et al. [20] reported that the solution OH
-
 promotes the initial deprotonation of the alcohol in 

alkaline media. In our recent study [21], we found that the reaction product of ethanol oxidation on 

gold can be considered as independent from the electrode’s orientation and is essentially defined by the 

changing local pH on the surface. Thus, the role of solution OH
-
 on the ethanol oxidation can be 

especially important at high potentials. To date, however, there has been no systematic study available 

on the reaction mechanism of ethanol oxidation using different crystallographic orientation of gold 

electrodes based on the function of pH and ethanol concentration in the solution.  

In this work, the oxidation of ethanol was investigated in alkaline medium on Au(h k l) single 

crystal electrodes. The influence of surface orientation on the adsorption and oxidation of ethanol was 

studied and its role in the reaction mechanism was discussed. In order to have more information about 

the mechanism of ethanol oxidation on gold in alkaline media, the effects of ethanol concentration as 

well as OH
-
 ion concentration were examined. Based on the obtained experimental data, the kinetic 

parameters were defined and the mechanism of the ethanol oxidation reaction was proposed.  

 

2. EXPERIMENTAL 

The electrochemical experiments were carried out at room temperature using a conventional 

standard three-electrode electrochemical cell. The electrode potential was controlled at 0 V using an 

EG&G PARC 175 signal generator in combination with an eDAQ EA161 potentiostat and currents 

were recorded using an eDAQ e-corder ED401 recording system. Cyclic voltammetry was employed 

as the experimental method and curves were recorded in the range of sweep rates from 5 to 50 mV s
-1

. 

Au(1 1 1), (1 0 0), (1 1 0) and (2 1 0) working electrodes with respective surface areas 3.91; 4.00; 3.85; 

4.22 mm
2
 were prepared by flame annealing method according to the procedure described previously 

for Pt beads [22, 23]. They were flame-annealed and quenched with a droplet of ultrapure water before 

transferring electrochemical cell. Reversible hydrogen electrode (RHE) and gold wire were used as a 

reference and counter electrodes, respectively. For the kinetic analysis, the reversible hydrogen 

potential value corrected with respect to the pH of the solution (ERHE = ESHE + 0.059 pH). Solutions 

were prepared with ultrapure water Purelab Ultra® (Elga Vivendi) and from NaOH pellets (Suprapur, 

Merck), NaClO4.H2O (Aldrich, 99% pure) and ethanol. Solution was purged with argon (Air Liquide, 

N50) and during the experiment, a continuous flow of Argon atmosphere was maintained above the 
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solution. Before addition of ethanol, cyclic voltammetry of the working electrode was done in alkaline 

solution to check the cleanliness of the solution and the good quality of the electrode surface.  

 

3. RESULTS AND DISCUSSION 

3.1. Cyclic voltammograms  

The electrocatalytic activity of Au(h k l) electrodes for the ethanol oxidation was investigated 

in 1 M NaOH + 1 M EtOH and the result is given in Fig. 1. On Au(1 1 1) electrode, the oxidation of 

ethanol in alkaline media starts in a potential range corresponding to the electrode surface coverage by 

OH
-
 ions and is reached its maximum value of 24 mA cm

-2
 at ~1.1 V. During the cathodic sweep, 

electrode sites was significantly inhibited due to the present of surface oxidation until the reduction 

takes place, so that the oxidation of ethanol starts again, giving a peak current at ~1 V. There is a 

hysteresis between the anodic and cathodic sweep in the potential range of ethanol oxidation (Fig.1), 

therefore, it can be deduced that the presence of adsorbed species on the Au(h k l) surface effects on 

the ethanol oxidation reaction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Cyclic voltammograms for the oxidation of 1M EtOH on (a) Au(1 1 1), (b) Au(1 0 0), (c) 

Au(1 1 0), (d) Au(2 1 0) surfaces in 1 M NaOH solutions. Dashed lines are the voltammetric 

curves in the absence of NaOH. Sweep rate: 50 mV s
-1

. 

 

3.2. Effect of the concentration of ethanol 

The kinetics of the ethanol oxidation process at a Au(h k l) electrode for different ethanol 

concentrations (from 0.1 M to 1 M) in 1 M NaOH solution was investigated under the quasi-stationary 

conditions (ʋ = 5 mV s
-1

) and the corresponding Tafel plots are shown in Figs. 2a, 2b, 2c and 2d. The 
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double layer current is subtracted from the total current of the voltammogram, leaving only the 

contribution of adsorption and oxidation of ethanol. 

Two Tafel slopes are observed. At low potential (E<-0.13 V vs. SHE), it is found to be 104-139 

mV decade
-1

, while at high potential (E>-0.13 V vs. SHE), the measured value is around 214-438 mV 

decade
-1

. The transfer coefficient, αn, value is calculated from the (Eq. 1), which is found to be close to 

0.5 at the low potential values (Table 1).   

 

The reaction order for ethanol was determined from the slope of log j/log CEtOH plot at fixed 

low potentials, as shown in Figs. 2e, 2f, 2g and 2h. The resulting order with respect to ethanol 

concentration is close to 1 for Au(1 1 1) and Au(2 1 0), whereas the reaction order is around 0.9 for 

Au(1 0 0) and Au(1 1 0) electrodes.  

 

Table 1. Tafel slopes and corresponding transfer coefficients for the oxidation of ethanol on Au(h k l) 

electrodes at low potential (E<-0.13 V) and high potential (E>-0.13 V) in 1 M NaOH, ʋ = 5 mV 

s
-1

. 

 

[EtOH]/M 

Au(1 1 1) Au(2 1 0) Au(1 0 0) Au(1 1 0) 

b1 αn1 b2 αn2 b1 αn1 b2 αn2 b1 αn1 b2 αn2 b1 αn1 b2 αn2 

0.1 124 0.48 245 0.24 116 0.51 324 0.18 115 0.51 256 0.23 115 0.51 438 0.14 

0.3 104 0.57 214 0.28 118 0.50 395 0.15 114 0.52 235 0.25 124 0.48 433 0.14 

0.5 123 0.48 264 0.22 139 0.43 346 0.17 119 0.50 285 0.21 128 0.46 316 0.19 

0.75 120 0.49 267 0.22 128 0.46 336 0.18 123 0.48 310 0.19 127 0.47 366 0.16 

1 130 0.46 282 0.21 117 0.51 355 0.17 119 0.50 301 0.20 123 0.48 368 0.16 

 “b1” corresponds to the tafel slope for the potential lower than -0.13 V vs. SHE, while the “b2” refers 

to tafel slope for the potential higher than -0.13 V vs. SHE (See Figs. 2a, 2b, 2c and 2d). The values of 

αn1 and αn2 are estimated from the Eq. 1. 

 

Fig. 3 shows the variation of peak current density with ethanol concentration. The reaction 

order deduced for ethanol is found to be 1 for Au(1 1 0) and Au(2 1 0), and 0.7 and 0.6 for Au(1 1 1) 

and Au(1 0 0), respectively. The change in the reaction orders (from 1 to 0.7 and 0.9 to 0.6) as well as 

the change in the Tafel slopes explains that the different reaction mechanism could occur in the 

different two potential regions (i.e, E<-0.13 and E>-0.13). In the high Tafel slope region, the adsorbed 

oxygenated species would be expected to be high, and thus, the dependence on the bulk concentration 

of ethanol becomes weaker.  

The peak current density for the ethanol oxidation on Au(1 1 1) and Au(1 0 0) electrodes (Fig. 

3) shows a gradual decrease that tends to plateau with increasing concentrations of ethanol (>0.75 M), 

which indicate that the change in the behaviour of the reaction from diffusion controlled to adsorption 

controlled due to the inhibiting effect of the adsorbed species on the surface and insufficient 

availability of OH
-
 in the solution. Therefore, it seems that the ethanol is adsorbed on the Au-OHads via 

the formation of hydrogen bridges between surface hydroxyl (OHads) species and the OH group of the 

alcohol, in a similar way to the previously suggested the mechanism on gold in alkaline media for the 

oxidation of n-propanol [5], methanol [1] and 1,3-propanediol [10]. 
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Figure 2. Tafel slopes of Au(1 1 1) (a), Au(2 1 0) (b), Au(1 0 0) (c), and Au(1 1 0) (d) electrodes for 

different ethanol
-
 concentration. CNaOH = 1 M, and reaction order plots (log j vs. log [OH

-
]) of 

Au(1 1 1) (e), Au(2 1 0) (f), Au(1 0 0) (g) and Au(1 1 0) (h) electrodes at a given value of 

potential. Sweep rate: 5 mV s
-1

. 
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Figure 3. Plot of peak currents vs. ethanol concentration in 1 M NaOH solution (a), and corresponding 

fitted lines on the log-log scale (b). Sweep rate: 5 mV s
-1

. 

 

3.3. Effect of the concentration of OH
-
 ions 

The effect of OH
-
 anions concentration (0.001 M - 1 M) was investigated at an ethanol 

concentration of 1 M and 0.1 M. In order to keep the ionic force constant, NaClO4 was added.  Figs. 

4a, 4b and 4c give the Tafel slopes obtained for ethanol oxidation at different OH
-
 concentrations. The 

measured Tafel slopes and the corresponding transfer coefficient values as a function of the OH
-
 ions 

concentration are presented in the Table 2.  

 

Table 2. Tafel slopes and corresponding transfer coefficient at low potential (E<-0.13 V) and high 

potential (E>-0.13 V) in 1 M EtOH for Au(1 1 1), Au(2 1 0) and in 0.1 M EtOH for Au(1 0 0), 

ʋ = 5 mV s
-1

. 

 

[OH] / M 

Au(1 1 1) Au(2 1 0) Au(1 0 0) 

b1 αn1 b2 αn2 b1 αn1 b2 αn2 b1 αn1 b2 αn2 

0.001 297 0.20 308 0.19 316 0.19 251 0.23 565 0.10 444 0.13 

0.005 - - - - - - - - - - 500 0.12 

0.01 158 0.37 224 0.26 139 0.42 256 0.23 - - 459 0.13 

0.05 100 0.59 265 0.22 100 0.59 287 0.21 549 0.11 293 0.20 

0.1 122 0.48 263 0.22 91 0.65 307 0.19 310 0.19 324 0.18 

0.5 130 0.45 274 0.22 146 0.40 318 0.19 - - - - 

1 168 0.35 290 0.20 171 0.35 366 0.16 - - - - 

 “b1” corresponds to the tafel slope for the potential lower than -0.13 V vs. SHE, while the “b2” refers 

to tafel slope for the potential higher than -0.13 V vs. SHE (See Figs. 4a, 4b, 4c). The values of αn1 

and αn2 are estimated from the Eq. 1. 

 

The reaction order for the OH
-
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second Tafel zone with the potentials from -0.13 to 0.13 V vs. SHE, which has a high slope values 

with the value of αn around 0.2 (Table 2). From the log j vs. log COH- plot (Figs. 4d, 4e and 4f), the 

reaction order with respect to OH
-
 concentration is obtained around 0.5 for Au(1 1 1) and Au(2 1 0), 

and around 0.2 for Au(1 0 0) in the potential range from -0.23 to -0.15V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Tafel slopes of Au(1 1 1) (a), Au(2 1 0) (b), and Au(1 0 0) (c) electrodes for different OH
-
 

concentration. CEtOH = 1 M for (a) and (b), CEtOH = 0.1 M for (c), and reaction order plots (log j 

vs. log [OH
-
]) of Au(1 1 1) (d), Au(2 1 0) (e), and Au(1 0 0) (f) electrodes at a given value of 

potential. Sweep rate: 5 mV s
-1

. 
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order of OH
-
 from 0.5 to 0.2 with increasing electrode potential on Au(2 1 0). It seems that the 

enhanced surface defects on this electrode lead to the increase in the adsorption of OH
-
, thus decreased 

in the influence of the bulk concentration of OH
-
. The different reaction order at the peak current 

density was also observed with the methanol oxidation on Pt-Pd/C electrocatalyst in alkaline medium, 

suggesting that different reaction process occurs in two different potential regions [24]. In the case of 

Au(1 0 0), however, there is no change in the reaction order of OH
-
 with the increasing potential.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Plot of peak currents vs. OH
-
 concentration in 0.1 M EtOH (a) and 1 M EtOH solution (c) 

and, corresponding fitted lines on the log-log scale (b) and (d), respectively. Sweep rate: 5 mV 

s
-1

. 
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Figure 6. Effect of pH on the forward and backward peak current ratio (If/Ib) for the oxidation of 1 M 

EtOH on Au(1 1 1) and Au(2 1 0) electrodes, scan rate 50 mV s
-1

. Inset is the comparison of 

the If/Ib value for the different Au(h k l) electrodes at pH 14. 

 

On the basis of analyzing the kinetic parameters for the ethanol oxidation reaction in alkaline 

media, a possible surface adsorption-reaction mechanism on Au(h k l) would be as follows, where the 

oxidation of ethanol is controlled by diffusion and adsorption step takes part in the rate determining 

process (r.d.s.). 

 

 

 

 

Supposing that the adsorbed OH
 
on the surface and ethanol molecules present in the solution 

are involved in the rate determining step (Eq. 3), and in a subsequent step, the rapid reaction between 

adsorbed ethoxy species and the solution OH
-
 ions leads to the oxidation product (Eq. 4). Therefore, 

the rate of reaction (Eq. 3) could be expressed as:  

 

where θOH is the surface coverage with adsorbed OH, [EtOH] is the concentration of ethanol in 

the solution, k is a rate constant, and α is the transfer coefficient.  

The fractional surface concentration of OH
-
 can be related to the bulk concentration of OH

-
 

using an adsorption isotherm in the simplest form: 

 

where K is the adsorption coefficient, θT is the surface coverage of all adsorbed species and n is 

the reaction order with respect to OH
-
. 

If Eq. (6) is substituted for Eq. (5) the reaction rate becomes as follows: 

 
 

4. CONCLUSION  

In the present study, the mechanism of the ethanol oxidation reaction on Au(h k l) electrodes in 

alkaline media was studied using the cyclic voltammetry. The effect of some experimental parameters 
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such as the ethanol and OH
-
 concentration in the solution was evaluated. At low potentials, the Tafel 

slope was around 120 mV dec
-1

, whereas at high potentials the Tafel slopes increased over 300 mV 

dec
-1

 as the mechanism of the ethanol oxidation affected by the formation of surface oxides on the gold 

electrodes. The kinetics of the ethanol oxidation on Au(h k l) was determined by the OH
-
 surface 

coverage, which depends on the electrode potential. 
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