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A theory of reversible electrode reaction preceded by the reversible chemical reaction is developed for 

square-wave voltammetry of amalgam forming ions on spherical electrode. It is shown that the lability 

parameter is diminished as the radius of electrode is decreased. This is in agreement with the previous 

calculations and shows that the diffusion of amalgam within the spherical electrode has no influence 

on the apparent lability of metal complex. 
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1. INTRODUCTION 

The interaction of trace metals with living organisms and suspended particles in natural waters 

depends on the distribution of their ionic species [1, 2]. In these media the metals are associated with 

inorganic and organic ligands, forming complexes of various strengths [3, 4]. Their bioavailability is 

determined by the concentrations of free ions and labile complexes [5]. The later species are 

characterized by such high rates of dissociation and association that full equilibrium between 

complexed and free ions is maintained under all conditions [6]. Analytical techniques applied to the 

speciation provide information about operationally defined fraction of trace metals with respect to the 

particular measurement procedure [7]. For the distinction between labile and inert complexes, 

voltammetric stripping techniques are widely employed [8, 9]. In these methods the lability is defined 

as the ratio between the fluxes of dissociation and diffusion of the complex [10]. It was shown 

theoretically that the apparent lability at spherical microelectrodes decreases as the electrode radius is 

decreasing [10, 11]. This is caused by the enhanced diffusion, while the kinetic flux is unaltered. This 

is confirmed by the analysis of CE mechanism on spherical electrodes [12 - 14]. The investigation of 
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this phenomenon is extended to electrode reactions of amalgam forming ions and the results are 

reported in this communication. In these reactions the diffusion of amalgam within the mercury drop 

must be taken in consideration [15 - 17]. Theoretical dependence of peak current and potential on the 

frequency and electrode radius is investigated in square-wave voltammetry. The chosen technique 

utilizes a combination of a staircase potential modulation and periodic square-shaped potential 

function [18]. It unifies the enhanced sensitivity of pulse techniques, the insight into the electrode 

mechanism of cyclic voltammetry and the information on kinetics of fast charge transfers [19, 20]. 

 

 

 

2. THE MODEL 

It is assumed that in the bulk of solution there are an amalgam forming metal ion M
n+

, a ligand 

L
n-

 and their complex ML and that the ion and the complex are connected by the first order 

dissociation and the second order complex formation kinetics. Finally, a reversible electrode reaction 

of free metal ions on mercury drop electrode is considered: 

ML     M
n+

 + L
n-

         (1)  

M
n+

 + ne
-
  
    M(Hg)         (2)  

        (3)          

             (4) 

      (5) 

     (6)  

    (7) 

       (8) 

        (9) 

                (10)    

       (11) 

          (12) 

          (13) 

The meanings of symbols are the following:  and  are concentrations of the 

complex ML and ions M
n+

 and L
n-

 in the electrolyte and atoms M in the mercury, respectively, 

and are the bulk concentrations of the complex and the ions,  is the stability constant of 

the complex,  is electrode potential,  is standard potential of electrode reaction (2),  is a common 

diffusion coefficient,  is a current,  is a number of electrons,  is Faraday constant,  is the electrode 

surface area and  is the radius of mercury electrode. 

The mass transport is calculated by the Feldberg approximation [21]: 

       (14) 

    (15) 
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         (16) 

                                    (17) 

Here: , , , , ,  is the rate 

constant of dissociation of the complex and . The simulation procedure is described in the 

Appendix. The results are reported as dimensionless current . In square 

wave voltammetry the current is sampled at the end of each pulse and the difference between two 

subsequent samples is called the net response: . The forward, reductive ( ) and the 

backward, oxidative ( ) components of the net response are also reported as a function of the 

potential of staircase ramp. 

The responses depend on the pulse amplitude , the potential step , the kinetics of 

chemical reaction and the inverse value of dimensionless electrode radius . In the 

simulation each pulse is divided into 25 time increments and the dimensionless diffusion coefficient d 

= 0.4 was used (see eq. A11). So, the parameter  depends on the number of space increments into 

which the electrode radius is divided: .  

 

 

 

3. RESULTS AND DISCUSSION 

 
Figure 1. A theoretical dimensionless square wave voltammogram of electrode reaction (2). A 

negative net response ( ) and its forward ( ) and backward ( ) components are 

shown.  = 0.3 V vs. ,  = 50 mV,  = -2 mV,  = 0.1,  = 5,  = 10
3
 L/mol, 

 = 10
-3

 mol/L and  = 10
-4

 mol/L. 
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Figure 1 shows an example of square wave voltammogram of electrode reaction (2). The 

dimensionless net peak current is 0.98 and the peak potential is -0.034 V vs. . The minimum and 

maximum of the reductive and oxidative components of the response appear at -0.036 V and -0.030 V, 

respectively. The limiting currents of both components tend to  if . However, the extremes 

of components do not vanish with the diminishing of electrode radius, as they do in the case of solution 

soluble product [22], because of the diffusion of amalgam that is restricted to the finite space within 

the drop [23].  

 

 
 

Figure 2. Dependence of dimensionless net peak current on the dimensionless inverse electrode 

radius;  = 0 (1), 0.5 (2), 7.5 (3) and  (4). All other parameters are as in Fig. 1. 

 

The relationships between net peak currents and the parameter  are shown in Fig. 2. They are 

curves with two asymptotes that are marked as (a) and (b). The curves (1) and (4) correspond to totally 

inert complex and to ideally labile complex, respectively. These two curves show dependence of pure 

diffusion flux density on electrode radius. In the case of inert complex, the current depends solely on 

the diffusion of free metal ions. Their bulk concentration is related to the total metal concentration by 

the following equation: . For the product , the ratio  is equal 

to 0.5. For this reason the slopes and intercepts of straight lines (a) and (b) in curve (4) are twice as big 

as the corresponding slopes and intercepts in curve (1). These values are as follows: 

 (4a), (1a),  (4b) and 
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 (1b). They are in agreement with the results of calculations of simple electrode 

reaction [23]. Under the influence of dissociation of complex, the peak currents increase but their 

dependence on  does not change essentially. The asymptotes (a) and (b) in the curves (2) and (3) are 

given by the following equations:  (2a),  (3a), 

 (2b) and (3b). Considering the definitions of  and the 

surface area of hemispherical microelectrodes, these straight lines indicate the dependence of the real 

net peak current on electrode radius and frequency. For instance, the line (3b) can be transformed into 

the following equation: 

                                         (18) 

However, the number 1.05 in the brackets of eq. (18) is the function of the ratio , which is 

the dimensionless rate constant of dissociation of complex. This shows that the relationship between 

 and the square-root of frequency is a curve that does not pass through the origin. 

 

 
 

Figure 3. Dependence of net peak potentials on the dimensionless inverse electrode radius;  = 0 

(1), 0.5 (2) and 7.5 (3). All other parameters are as in Fig. 1. 

 

Fig. 3 displays the dependence of peak potential of the net response on the parameter . The 

straight lines (a) and (b) in this figure are defined by the following equations: 

(V) and   (V). The values of the intercept  increase 

proportionally to the dimensionless rate constant of dissociation: 0.002 (1a), 0.008 (2a), 0.016 (3a), 
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0.012 (1b), 0.019 (2b) and 0.029 (3b). These shifts of peak potentials are caused by the energy that is 

needed for the partial dissociation of the complex. This phenomenon can be used for the determination 

of stability constant of the complex by the method of DeFord and Hume [24]. The relationship 

between peak potentials and the logarithm of concentration of ligand is shown in Fig. 4 for three types 

of complexes and two values of sphericity parameter. If the complex is totally inert, the peak potential 

is independent of the ligand concentration. The dependence of  on log  of ideally labile complex is 

a curve that tends to the asymptote:  

 - 0.059 log  - 0.059 log                                               (19) 

The cross section of this asymptote and the straight line  determines the 

logarithm of stability constant: log  = -(log )cross. This cross section is independent of the 

parameter . In the general case the peak potential is a function of the kinetics of dissociation of 

complex as well as of the ligand concentration and dimensionless electrode radius. This is shown by 

the curve (2) in Fig. 4. If  = 0.03 this curve tends to the straight line: 

- 0.034 log  - 0.034 log                                                  (20) 
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Figure 4. Dependence of peak potential on the logarithm of ligand concentration;  = 0.03 (A) and 0.5 

(B);  = 0 (1), 0.5 (2) and  (3). All other parameters are as in Fig. 1. 

 

The slope of this line indicates that the number of ligands in the complex is 0.58. The physical 

meaning of this number is that 58% of the complex is dissociated during the voltammetric 

measurement. If  = 0.5 the slope of the straight line (2) is -0.023 V, which indicates that the number 

of ligands is 0.39. This means that the complex appears less dissociated if the parameter  is bigger. 

However, the stability constants that are determined from the cross sections of straight lines (1) and (2) 

do not depend on  significantly: log  = 2.94 if  = 0.03 and log  = 3 if  = 0.5. 

Figure 5 shows the dependence of net peak currents on the dimensionless rate constant of 

dissociation of complex. Within the interval 0.01 <  < 6 these relationships satisfy a general 

equation: 

             (21) 

The exponent  depends on the sphericity parameter:  = 0.5 (  = 0.03), 0.57 (  = 0.1), 0.71 (  

= 0.3) and 0.77 (   0.5). The values of  are reported as the short lines at the right edge 

of the figure. One can notice that the difference between  that is calculated for the highest value 

of the kinetic parameter  and the corresponding  is bigger if  is bigger. This is 

quantified in Fig. 6A in which the ratio /   is shown as a function of the sphericity 

parameter .  
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Figure 5. Relationship between net peak currents and the dimensionless dissociation rate constant:  =  

                 0.03 (1), 0.1 (2), 0.3 (3), 0.5 (4) and 0.7 (5). All other parameters are as in Fig. 1. 
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Figure 6. An influence of dimensionless inverse electrode radius on the ratio of net peak current and 

the limiting net peak current for ideally labile (A) and totally inert complex (B);  = 8.5 and 

all other parameters as in Fig. 1. 

 

This relationship consists of two straight lines, one for  < 0.2 and the other for  > 0.2: 

 = -0.74  + 0.95                                                          (22) 

  = -0.10  + 0.85                                                          (23) 

Fig. 6B shows that the dependence of the ratio  on the parameter  can be 

also described by two straight lines: 

 = -1.48  + 1.90                                                            (24) 

 = -0.19  + 1.70                                                            (25) 

The limiting currents  and  depend solely on the diffusion, while 

 is caused by both diffusion and dissociation. Fig. 6 demonstrates that for the same 

dimensionless rate constant and the same concentrations of metal and ligand, the contribution of the 

dissociation to the mixed flux is smaller if  is bigger. This means that the complex appears more inert 

if the electrode radius is smaller. 

 

 

4. CONCLUSIONS 

These results show that the apparent lability of metal complex depends on the radius of 

spherical microelectrode. The shift of peak potential with the logarithm of ligand concentration 
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indicates higher number of ligands in the complex if the radius of electrode is bigger. Also, the degree 

of dissociation of complex apparently decreases with the increasing sphericity parameter. So, the 

complex may appear less labile at microelectrode than at macroelectrode. 

 

APPENDIX: 

Dimensionless concentrations are defined as follows: , 

,  and where 

. Dimensionless current  is calculated by the following 

formulae: 

    (A1) 

                               

       (A2) 

      

                     (A3) 

    

            (A4) 

  

    

  (A5) 

    

  (A6) 

  

   (A7) 

                  (A8) 

  

        

        (A9) 

       

                                     (A10)  
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                                                                                                (A11) 

                                                                 (A12) 

                                                 (A13) 

             (A14) 
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